Progesterone alleviates hypoxic-ischemic brain injury via the Akt/GSK-3β signaling pathway
نویسندگان
چکیده
This aim of this study was to investigate whether progesterone (PROG) alleviates the neuronal apoptosis in neonatal rats with hypoxic-ischemic (HI) brain damage through the phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK-3β) signaling pathway. A total of 96 newborn Wistar rats aged 7 days were randomly divided into four groups: sham surgery, HI, drug prevention (PROG) and Akt inhibitor groups. HI animal models were established by a conventional method. All animals were sacrificed 24 h after hypoxia. Immunohistochemistry was used to detect the distribution and expression of phosphorylated Akt (p-Akt) and the GSK-3β proteins in the brain, and western blot analysis was used to determine the p-Akt and GSK-3β protein contents. An enzyme-linked immunosorbent assay was also used to determine the GSK-3β content of the brain tissue, and flow cytometry was used to evaluate the apoptosis rate of neural cells. The expression of p-Akt protein was reduced in the brain tissues of the HI group, whereas GSK-3β expression was increased. In addition, the GSK-3β content of the brain and the neuronal apoptosis rate were significantly increased. PROG pre-treatment increased p-Akt expression, decreased GSK-3β expression and GSK-3β content, and also reduced neuronal apoptosis. Following administration of the Akt inhibitor wortmannin, p-Akt expression decreased, GSK-3β expression increased, and the GSK-3β content and neuronal apoptosis rate significantly increased (P<0.05). In conclusion, PROG activates the PI3K/Akt/GSK-3β pathway to promote Akt activation, enhance p-Akt expression and inhibit GSK-3β expression, thereby inhibiting neuronal apoptosis, alleviating HI brain injury and inducing a cerebroprotective effect.
منابع مشابه
Ferulic acid regulates the AKT/GSK-3β/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model
Ferulic acid, a component of the plants Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort, exerts a neuroprotective effect by regulating various signaling pathways. This study showed that ferulic acid treatment prevents the injury-induced increase of collapsin response mediator protein 2 (CRMP-2) in focal cerebral ischemia. Glycogen synthase kinase-3β (GSK-3β) regulates CRMP-2 func...
متن کاملEffect of Epigallocatechin Gallate and Catechin on Overexpression of GSK-3β and IR Genes Induced by Streptozotocin in Rat Brain
Background: Type 2 diabetes mellitus (T2DM) is one of the significant risk factors for Alzheimer disease (AD). Defects in insulin signaling pathway induce AD hallmarks mainly through activation of glycogen synthase kinase-3β (GSK-3β) pathway. Objectives: In this study, we investigated the expression of GSK-3β and insulin receptor (IR) genes in the hippocampi of an animal model of sporadic AD ...
متن کاملAkt regulates β-catenin in a rat model of focal cerebral ischemia-reperfusion injury.
The present study aimed to investigate the effects of the phosphoinositide 3‑kinase (PI3K)/Akt signaling pathway on the Wnt/β‑catenin signaling pathway in rats with focal cerebral ischemia‑reperfusion injury. A total of 96 rat focal cerebral ischemia‑reperfusion models, established according to a modified version of Longa's method, were randomly divided into four groups: Sham‑operated (S), cere...
متن کاملDiallyl trisulfide exerts cardioprotection against myocardial ischemia-reperfusion injury in diabetic state, role of AMPK-mediated AKT/GSK-3β/HIF-1α activation
Diallyl trisulfide (DATS), the major active ingredient in garlic, has been reported to confer cardioprotective effects. However, its effect on myocardial ischemia-reperfusion (MI/R) injury in diabetic state and the underlying mechanism are still unknown. We hypothesize that DATS reduces MI/R injury in diabetic state via AMPK-mediated AKT/GSK-3β/HIF-1α activation. Streptozotocin-induced diabetic...
متن کاملDiabetic Inhibition of Preconditioning- and Postconditioning-Mediated Myocardial Protection against Ischemia/Reperfusion Injury
Ischemic preconditioning (IPC) or postconditioning (Ipost) is proved to efficiently prevent ischemia/reperfusion injuries. Mortality of diabetic patients with acute myocardial infarction was found to be 2-6 folds higher than that of non-diabetic patients with same myocardial infarction, which may be in part due to diabetic inhibition of IPC- and Ipost-mediated protective mechanisms. Both IPC- a...
متن کامل